Does stem cell therapy induce myocardial neoangiogenesis? Histological evaluation in an ischemia/reperfusion animal model.
نویسندگان
چکیده
BACKGROUND In an experimental model in the rabbit, a myocardial ischemia-reperfusion injury was obtained. Subsequently, the effects of homologous bone marrow stem cell (BMSC) administration were studied. METHODS In 21 New Zealand adult rabbits, ischemia/reperfusion damage was induced by temporary occlusion of the anterior descending coronary artery. Homologous BMSCs were isolated, cultured and re-suspended for injection at the level of the ischemic zone. We evaluated the proangiogenetic effect of intramyocardial injections of BMSC at the peri-infarcted area. Histological evaluations were made after 20 days from the surgical procedure. RESULTS In rabbits treated with intramyocardial BMSC administration, we demonstrated histologically capillary neoangiogenesis, without signs of tissue immunological reaction or of generation of new myocardial cells. On the contrary, only minimal neovascular supply was detected in rabbits treated with intravenous administration of BMSC. Only typical signs of ischemic myocardium injury were observed in the control group. CONCLUSION These observations suggest that the effect of direct BMSC administration in ischemic myocardium could promote a capillary neoangiogenesis, which helps to prevent ischemic myocardial damage.
منابع مشابه
Does Heart Affect Peripheral Vascular Resistance Following Myocardial Ischemia and Reperfusion?
Objective(s) The aim of this study was to investigate the overall effect of cardiac vasoactive factors during coronary occlusion and reperfusion on peripheral vascular tone, using a sequential isolated rabbit heart-ear perfusion model. Materials and Methods Isolated ears were perfused with the effluent of isolated hearts subjected to ischemia (30 min) and reperfusion (180 min, n=6). The comp...
متن کاملCell Therapy in Cardiovascular Disease
Recently, cell therapy has sparked a revolution in ischemic heart disease that will in the future help clinicians to cure patients. Earlier investigations in animal models and clinical trials have suggested that positive paracrine effects such as neoangiogenesis and anti-apoptotic can improve myocardial function. In this regard the Royan cell therapy center designed a few trials in collaborat...
متن کاملOrexin-A Improves Hepatic Injury Following Renal Ischemia Reperfusion in Rats
Introduction: Orexins are novel neuropeptides that are localized in neurons in the lateral hypothalamus. They are implicated in a wide variety of physiological functions. Orexin peptides and receptors are found in many peripheral organs such as kidneys. It has been demonstrated that exogenous orexin-A can induce protective effects against ischemia–reperfusion injury in many organs. The goal ...
متن کاملStem cells for cardiac repair in acute myocardial infarction.
Despite recent advances in medical therapy, reperfusion strategies, implantable cardioverter-defibrillators and cardiac assist devices, ischemic heart disease is a frequent cause of morbidity and mortality worldwide. Cell therapy has been introduced as a new treatment modality to regenerate lost cardiomyocytes. At present, several cell types seem to improve left ventricular function in animal m...
متن کاملRenoprotective potential of exogen erythropoietin on experimental ruptured abdominal aortic aneurysm model: An animal study
Objective(s): The aim of this study is to investigate the renoprotective effect of erythropoietin (EPO) on hypovolemic shock and ischemia/reperfusion (IR) injury on kidneys as end-organs in an experimentally-created ruptured abdominal aortic aneurysm (rAAA) model.Materials and Methods: Thirty anesthetized Sprague-Dawley male rats were ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cardiovascular medicine
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2017